Google Research Blog
The latest news from Research at Google
Improving YouTube video thumbnails with deep neural nets
Thursday, October 08, 2015
Posted by Weilong Yang and Min-hsuan Tsai, Video Content Analysis team and the YouTube Creator team
Video thumbnails
are often the first things viewers see when they look for something interesting to watch. A strong, vibrant, and relevant thumbnail draws attention, giving viewers a quick preview of the content of the video, and helps them to find content more easily. Better thumbnails lead to more clicks and views for video creators.
Inspired by the recent remarkable advances of
deep neural networks
(DNNs) in computer vision, such as
image
and
video
classification, our team has recently launched an improved automatic YouTube "thumbnailer" in order to help creators showcase their video content. Here is how it works.
The Thumbnailer Pipeline
While a video is being uploaded to YouTube, we first sample frames from the video at one frame per second. Each sampled frame is evaluated by a
quality model
and assigned a single
quality score
. The frames with the highest scores are selected, enhanced and rendered as thumbnails with different sizes and aspect ratios. Among all the components, the quality model is the most critical and turned out to be the most challenging to develop. In the latest version of the thumbnailer algorithm, we used a DNN for the quality model. So, what is the
quality model
measuring, and how is the score calculated?
The main processing pipeline of the thumbnailer.
(Training) The Quality Model
Unlike the task of identifying if a video contains your favorite animal, judging the visual quality of a video frame can be very subjective - people often have very different opinions and preferences when selecting frames as video thumbnails. One of the main challenges we faced was how to collect a large set of well-annotated training examples to feed into our neural network. Fortunately, on YouTube, in addition to having algorithmically generated thumbnails, many YouTube videos also come with carefully designed custom thumbnails uploaded by creators. Those thumbnails are typically well framed, in-focus, and center on a specific subject (e.g. the main character in the video). We consider these custom thumbnails from popular videos as positive (high-quality) examples, and randomly selected video frames as negative (low-quality) examples. Some examples of the training images are shown below.
Example training images.
The visual quality model essentially solves a problem we call "binary classification": given a frame, is it of high quality or not? We trained a DNN on this set using a similar architecture to the Inception network in
GoogLeNet
that achieved the top performance in the ImageNet 2014 competition.
Results
Compared to the previous automatically generated thumbnails, the DNN-powered model is able to select frames with much better quality. In a human evaluation, the thumbnails produced by our new models are preferred to those from the previous thumbnailer in more than 65% of side-by-side ratings. Here are some examples of how the new quality model performs on YouTube videos:
Example frames with low and high quality score from the DNN quality model, from video “
Grand Canyon Rock Squirrel
”.
Thumbnails generated by old vs. new thumbnailer algorithm.
We recently launched this new thumbnailer across YouTube, which means creators can start to choose from higher quality thumbnails generated by our new thumbnailer. Next time you see an awesome YouTube thumbnail, don’t hesitate to give it a
thumbs up
. ;)
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
AI
Android
API
App Engine
App Inventor
April Fools
Art
Audio
Australia
Automatic Speech Recognition
Awards
Cantonese
China
Chrome
Cloud Computing
Collaboration
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
data science
datasets
Deep Learning
DeepDream
DeepMind
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
electronics
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Europe
Exacycle
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Gmail
Google Books
Google Brain
Google Cloud Platform
Google Drive
Google Genomics
Google Science Fair
Google Sheets
Google Translate
Google Voice Search
Google+
Government
grants
Hardware
HCI
Health
High Dynamic Range Imaging
ICLR
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
KDD
Klingon
Korean
Labs
Linear Optimization
localization
Machine Hearing
Machine Intelligence
Machine Learning
Machine Perception
Machine Translation
MapReduce
market algorithms
Market Research
ML
MOOC
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
Ngram
NIPS
NLP
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
ph.d. fellowship
PiLab
Policy
Professional Development
Proposals
Public Data Explorer
publication
Publications
Quantum Computing
renewable energy
Research
Research Awards
resource optimization
Robotics
schema.org
Search
search ads
Security and Privacy
SIGCOMM
SIGMOD
Site Reliability Engineering
Software
Speech
Speech Recognition
statistics
Structured Data
Systems
TensorFlow
Translate
trends
TTS
TV
UI
University Relations
UNIX
User Experience
video
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
YouTube
Archive
2016
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Google
on
Follow @googleresearch
Give us feedback in our
Product Forums
.